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© Introduction

Big data # Big annotated data

Machine learning techniques include:
Supervised learning (if we have labelled data)
Reinforcement learning (if we have an environment for reward)
Unsupervised learning (if we do not have labelled data)



Latent Factors for Handwritten Digits
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Q Latent Factors for Documents

Topics
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Seeking Life’s Bare (Genetic) Necessities
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© Latent Factors for Recommendation System




Latent Factors for Recommendation Systems
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@ Latent Factor Exploitation

@ Handwritten digits

o . The handwritten images are
- composed of strokes
v k= +

Strokes (Latent Factors)
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Latent Factor Exploitation

Strokes (Latent Factors)

‘o || Z||Q]| -

No. 1 No. 2 No. 3 No. 4 No. 5
28 No. 1 No. 3 No. 5
A
28 : 7 - |’ + + /
Represented by 1 01 0 1 0 ...]

28 X 28 = 784 pixels (simpler representation)



©) Discriminative vs. Generative

Discriminative: calculate the probability of output given input P(Y|X)

Generative: calculate the probability of a variable P(X), or multiple
variables P(X,Y)



Variable Types

Observed vs. Latent:
Observed: something we can see from our data, e.g. X or Y
Latent: a variable that we assume exists without a given value

Deterministic vs. Random:
Deterministic: variables calculated directly via deterministic functions
Random (stochastic): variables obeying a probability distribution

A latent variable model is a probability distribution over two sets of
variables

p(z, z; 6)

Observed Latent



@ Latent Variable Types p(z, 2; 0)

Latent

Latent continuous vector
Auto-encoder
Variational auto-encoder

Latent discrete vector
Topic model

Latent structure
HMM
Tree-structured model



(12 Auto-Encoder

Representation Learning




@ Auto-Encoder

An observed output x
A latent variable z
A function (network) f parameterized by 8 maps from z to x

z = f(z;0)

Observed Latent



@ Auto-Encoder

Represent a digit using 28 X 28 dimensions
Not all 28 X 28 images are digits

A\ » code compact representation of
SELRLED the object

28 X 28 = 784 t

Usually <784
Learn together

NN reconstruct the original object
code
» Decoder »m




@ Auto-Encoder

Minimize (x — y)?

i As close as possible L

encode decode
o B &
w w'
hidden layer
Input layer  Bottleneck layer ~ OUtPut layer

z=cWx+b) y=c(W'z+b")




@ Denoising Auto-Encoder

Improve robustness of a latent variable

1 As close as possible 1

encode

3
X

w




@ Deep Auto-Encoder
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@) Deep Auto-Encoder
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@ Feature Representation
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€@ Auto-Encoder — Similar Image Retrieval

Retrieved using Euclidean distance in pixel intensity space




@ Auto-Encoder — Similar Image Retrieval
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@ Auto-Encoder — Similar Image Retrieval

Images retrieved using Euclidean distance in pixel intensity space

dist: 0.0

™

b,

S,

dist: 3064.2 dist: 3094.1 dist: 3132.4

dist: 64 dist: 65

dist: 61

Learning the useful latent factors




@ Auto-Encoder — Text Retrieval

Vector Space Model Bag-of-word ord string:
“This is an apple”
this &

@ is
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@ Auto-Encoder — Text Retrieval

European Community

Interbank markets monetary/economic
v _'g‘ Sl - %
" " LR - . %
Energy markets 3 s b W
kb, B Disasters and
e 3 2w+ accidents
* oY, S
125 * O L e A
500 Accounts/ . e
eamings

2000 00000

Bag-of-word (document or query)

PR pofsd o,'._."
p F : - ol : % -' . M y N 4

" S -& x ‘)
Leading economic” - . “ Legalljudlcal
indicators . ‘? : ’Kv\‘

% ‘\

,.-

Government

borrowings

The documents talking about the same thing will have close code




@ Denoising Auto-Encoding

Objective: reconstructing x from 9?

max log pg(X | X) th log pg(xy | X) th log

t=1 Dz €XP (HG( )i e x’))

dimension reduction or denoising (masked LM)

Use the output of the 01% | Aardvark

, e Possible classes: LNt
maSKeq word’s position All English words 10%  Improvisation
to predict the masked word

0% | Zyzzyva

[ FFNN + Softmax ]

BERT

Randomly mask
15% of tokens

[CLS] [MASK]



Auto-Encoder Layer-Wise Pre-Training
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Auto-Encoder Layer-Wise Pre-Training
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Auto-Encoder Layer-Wise Pre-Training

output 10 1000 a** ]

Target
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Auto-Encoder Layer-Wise Pre-Training

Fine-tune via backprop

output 10 output 10

. B R W
500 - 500
B * \a B

E‘ 1000 1000
4 v W

1000 1000
* R w

Input 784 Input 784

random
Initialization



€) Masked Auto-Encoder (Germain etal., 2015)

MADE: masked auto-encoder for distribution estimation
Reconstruction in a given ordering

P($1|Tz r3) P(Tz) P(J 3|z2)

'I 1 J"z I3

Autoencoder x Masks ——> MADE



@ Variational Auto-Encoder

Representation Learning and Generation



@ Generation from Latent Codes

encode




@ Latent Code Distribution Constraints

Constrain the data distribution for learned latent codes
Generate the latent code via a prior distribution

encode decode




€ Vvariational Auto-Encoder

An observed output x
A latent variable z generated from a Gaussian
A function (network) f parameterized by 8 maps from z to x

Obgfved: f(L’tzat 9) c NA[(;} 0



@ Vvariational Auto-Encoder & = f(z2; 6)

Observed Latent

For each datapoint i N ( )
Draw latent variables z: ~ P(Z) & hd 9

Draw a datapoint x; ~ pg(z | 2) l /
L

Joint probability distribution over data and latent variables
p(z,z) = p(2)pe(z | 2)

prior posterior
Learning objective: maximize the corpus log likelihood

log P(X) = Z log P(x;0)

reX



€ Vvariational Auto-Encoder

The marginal likelihood of a single datapoint x
P(x;0) = fP(:B | z;0)P(2)dz

Approximation by sampling Z

Z P(x | z;0)

zNP



€) Vvariational Auto-Encoder

Two tasks
Learn to generate data from the latent code: PB(QT | Z)

Learn the distribution of latent factors: pg(z | gc)

Wu
‘ M decode
n X encode — Z ‘ y
samplin /
- pling W
W

g

N(p,0)



€) Vvariational Auto-Encoder

Two tasks
Learn to generate data from the latent code: PB(iE | Z)

Learn the distribution of latent factors: pg(z | gc)
) — po(z | 2)p(2)
p(a:) = /p(z)pg(a? | z)dz Intractable

po(z | x

Variational inference approximates the true posterior pg(z | )
with a family of distributions gy (z | x)

minimize KL(Q¢(Z | 33) H pg(z | CB))



€ Vvariational Auto-Encoder

Twotasks iU
z | x
Generator (Decoder): Pe(fl? | Z) | qlﬁf(erellce) |
Inference (Encoder) : Q¢(z | x) ' (Encoder) !

po(z | 2)
Generator
(Decoder)

EZNq¢(z\x) [lngg(iL' | Z)] o DKL(Q¢(Z ‘ 33‘) H p(Z))

\ ] |

| |

reconstruction loss KL regularizer




Variational Auto-Encoder

———————————————————

VAE qs(z] )|

— Inference —. & >

(Encoder)

po(z | 2)
Generator
(Decoder)

—>a:

p(2)

Ez~q¢(z\x) [lngg(.’B ' Z)] _ DKL(Q¢(Z | Ll?) H p(Z))

AE

—” Inference —* Z >

ez z)

(Encoder)

po(z | 2)
Generator
(Decoder)

—>a;'

L e 1 ?

AE is not generative model: (1) Can’t sample new data from AE

(2) Can’t compute the log likelihood of data x



Image Reconstruction
-
AE ‘
2 - -
VAE ' !




@ Text Reconstruction

AE: standard encoder-decoder

i went to the store to buy some groceries .
1 store to buy some groceries .
o ) i were to buy any groceries .

embedding interpolation horses are to buy any groceries .
horses are to buy any animal .
horses the favorite any animal .
horses the favorite favorite animal .
horses are my favorite animal .

VAE

“ i want to talk to you . ”

“ want to be with you . ”

“i do n’t want to be with you .
i do n’t want to be with you .
she did n’t want to be with him .

»

embedding interpolation

he was silent for a long moment .
he was silent for a moment .

it was quiet for a moment .

it was dark and cold .

there was a pause .

it was my turn .




@ VAE Training Tips

Posterior collapse issue
KL divergence is easier to learn, so model learning relies solely on
decoder and ignore latent variable

E.gs(zlz) logpo(z | 2)] — Dru(ge(z | ) || p(2))

requires good generative model set the mean/variance of g to be the same as p
Solutions
KL divergence annealing: an increasing constant to weight KL term
KL thresholding > “max[, Dxr(gs(zil2)|Ip(2:))] ' i

5 80% 60 3
2 60% 50 8
E 40 E
g 40% 30 2
a 20 %
2 20%
1.0
0% 0.0

0 10000 20000 30000 40000 50000

Step

= KL term weight —KL term value



¢) Dual Learning

Learning Two Tasks via Duality


https://taoqin.github.io/DualLearning_ACML18.pdf

® Task Duality

TEN

f:xz—uy g:y—c
Primal Dual
Task Task

Nl

Al Tasks f:x—y g:y—z
Machine translation EN -> CH CH -> EN
Speech processing ASR TTS

Image understanding captioning Image generation

Language understanding

Question answering

Language understanding

QA

Language generation

Question generation




€@ Dual Unsupervised Learning

Idea: improve tasks by leveraging feedback signal via RL etc.

En - Ch
Primal Task

f:rx—y
I,,’—-N\\\

Machine Translation

« English sentence x /j \‘ o
- New English sentence L A feedback Y inese sentence
x'=g(y) \ signal [} y=f(x)
\\ﬁ__f,/
Dual Task
g:y—x

Ch 2 En



€@ Joint Dual Learning

|ldea: perfectly reconstructing the input via two models

NLU

CPEYN o)

\ areda[riverside],

il
3

qt the riverside there ' ! |I ) eatType[pub],
is a pub called the blue spice \\\\~_, ,/, name[blue spice] f ( ( ) ) —
\ Sa=” g y - y
NLG
gYy-X
-——==p -——==p

Primal Cycle Dual Cycle

Shang-Yu Su, Chao-Wei Huang, and Yun-Nung Chen, “Towards Unsupervised Language Understanding and Generation by Joint Dual Learning,” in Proceedings of The 58th Annual
Meeting of the Association for Computational Linguistics (ACL), 2020.



€@ Joint Dual Learning Objective

Explicit
Reconstruction Likelihood

logp(x | f(xi;602-y);0y—5) Primal
log p(y | 9(Yi;0y—2); 02—y) Dual

Automatic Evaluation Score
BLEU and ROUGE for language (NLG)
F-score for semantic (NLU)

Implicit
Model-based methods estimating data distribution

Language modeling (LM) for language
Masked autoencoder (MADE) for semantics

Shang-Yu Su, Chao-Wei Huang, and Yun-Nung Chen, “Towards Unsupervised Language Understanding and Generation by Joint Dual Learning,” in Proceedings of The 58th Annual
Meeting of the Association for Computational Linguistics (ACL), 2020.



€ Dual Supervised Learning (xia et al., 2017)

Proposed for machine translation
Consider two domains X and Y, andtwotasks X - YandY - X

Py
X Y

y—Xx

We have P(x,y) = P(x [ y)P(y) = P(y | x)P(x)
Idea”y P(x, Y) = P(x | Y Hyex)P(Y) = P(y | x; 0x—>y)P(x)

Xia, Y., Qin, T., Chen, W., Bian, J., Yu, N, & Liu, T. Y., “Dual supervised learning,” in Proc. of the 34th International Conference on Machine Learning, 2017.



€ Dual Supervised Learning

Exploit the duality by forcing models to follow the probabilistic constraint
P(x | y;0y.)P(y) = P(y | x; 0,,y)P(x)

Objective function

ming, E[l (f(%; 0x-y ), M)] + Aesy lauatity
mingy_mIE[lz (g9 (y; 9y—>x)r X) + Ay—>x lduality

_______________________________________________________________________________________________

Xia, Y., Qin, T., Chen, W., Bian, J., Yu, N, & Liu, T. Y., “Dual supervised learning,” in Proc. of the 34th International Conference on Machine Learning, 2017.



@ Dual Supervised Learning

Considering NLU and NLG

_—> NLU —

Natural Language Semantic Frame

KoDona/d’s IS a cheap f?’/ESTA URANT="McDonald’s”
restaurant nearby the station. ﬁglﬁ =“cheap”

logP(x) JION= nearby the station”

'\NLG+

Shang-Yu Su, Chao-Wei Huang, and Yun-Nung Chen, “Dual Supervised Learning for Natual Language Understanding and
Generation,” in Proceedings of The 57th Annual Meeting of the Association for Computational Linguistics (ACL), 2019.



€ NLU/NLG Results

E2E NLG data: 50k examples in the restaurant domain
NLU: F-1 score; NLG: BLEU, ROUGE

NLG Baseline

ROUGE-1

NLG Baseline

BLEU

F1

50 55 60 65

70

NLU Baseline

75



€ NLU/NLG Results

E2E NLG data: 50k examples in the restaurant domain
NLU: F-1 score; NLG: BLEU, ROUGE

NLG Baseline

ROUGE-1 | 05 /o MA0E

NLG Baseline

BLEU | os. vwio MADE

NLU Baseline

F 1 DsL wio MADE

50 55 60 65 70 75



€ NLU/NLG Results

E2E NLG data: 50k examples in the restaurant domain
NLU: F-1 score; NLG: BLEU, ROUGE

NLG Baseline
ROUGE-1 DSL w/o MADE
DSL w/ MADE

NLG Baseline

BLEU DSL w/o MADE
DSL w/ MADE
NLU Baseline
F1 DSL w/o MADE
DSL w/ MADE

50 55 60 65 70 75




Comparison

4 . . . .
Unsupervised/semi-supervised learning:

only one task; no feedback signals for
\unlabeled data

Co-training: only one task; different feature
sets provide complementary information
about the instance

p
Multi-task learning: multiple tasks share

\the same representation

J

-

/E\

e

Dual learning: multiple tasks involved;
automatically generate reinforcement
feedback for unlabeled data,

Dual learning: multiple tasks involved; no

e

\assumption on feature sets

Dual learning: don’t need to share

Krepresentations, only when the closed loop

p
Transfer learning: use auxiliary tasks to

L boost the target task

e

Dual learning: all tasks are mutually and

| simultaneously boosted




¢) Self-Supervised Learning

Self-Prediction and Contrastive Learning



https://nips.cc/media/neurips-2021/Slides/21895.pdf

Self-Supervised Learning

Self-supervised learning (SSL): a special type of representation
learning via unlabeled data

ldea: constructing supervised tasks out of unsupervised data
High cost of data annotation

Limited annotated data

Good representation makes it easier to transfer to diverse
downstream tasks



€ Self-Supervised Learning

Self-Prediction
Given an individual data sample, the task is to predict one missing
part of the sample given the other part

?

N

“‘intra-sample” prediction

Contrastive Learning
Given multiple data samples, the task is to predict their relationship

:> relationship?

“‘inter-sample” prediction




@ Sel f- P I ed | Ctl ON (illustration from Yann LeCun)

Assume: a part of the input is unknown and predict it
Predict the future from the past ’

Predict the future from the recent past ’

Predict the past from the present

Predict the top from the bottom

Predict the occluded from the visible <— past P future —»
present



¢) Contrastive Learning

Adapting Embedding Spaces




@ Contrastive Learning

|Idea: learn an embedding space where similar sample pairs stay
close to each other while dissimilar ones are far apart

Inter-sample classification

Feature clustering

Multi-view coding

o © . ®e
CKO

o ©



@ Inter-Sample Classification

Task: given both similar (“positive”) and dissimilar (“negative”)
candidates, identifying which is similar to the anchor datapoint
Datapoint candidates

The original input and its distorted version

Data capturing the same target from different views



Inter-Sample Classification

Triplet loss (Schroff et al., 2015)

minimize the distance between the anchor x and positive x* and maximize
the distance between the anchor x and negative x~ at the same time

Lisiplet (2,27, 2~ ZmaX(O | £(z) = £ D)5 — | £(=) — £ )5 +€)

as close as possible as far as possible

LEARNING
Negative
\
|
| |

Negative
Anchor
Anchor

Positive

Positive



@ Inter-Sample Classification

N-pair loss (Sohn, 2016)

generalizes to include comparison with multiple negative samples

L-pair(z, 2", {2 })10g(1+zexp (2)" f(z;) - f(ﬂ?)Tf(w+)))



® Feature Clustering

@ ldea: cluster similar datapoints based on learned features
—> assign pseudo labels to samples for intra-sample classification

@ Clustering i ® @
e

T \

P |
’

¥ 1
=\ I
- | |
\ !

’

’

’,

Contrastive style classification




@ Multiview Coding

Idea: apply the InfoNCE objective to different views of input
Data augmentation is adopted for generating different views
“views” can come from different modalities

\.
‘A\ > Encoder
Match
. f
—>  Encoder

__________________________________________________________________________________________

_________________________________________________________________________________________



@ Contrastive Learning in NLP

SImMCSE (Gao et al., 2021): simple contrastive learning of

sentence embeddings

Unsupervised: predict a sentence from itself with only dropout noise

(a) Unsupervised SimCSE

Different hidden dropout mask
in two forward passes

[ Two dogs are running.

A man surfing on the sea.

A kid is on a skateboard.

Encoder
. — Positive instance
i —= Negative instance '

Gao, Tianyu, Xingcheng Yao, and Dangi Chen. "SImCSE:

Language Processing, 2021.

Model STS12 STS13 STS14 STS15 STS16 STS-B  SICK-R  Avg.
Unsupervised models
GloVe embeddings (avg.)"' 55.14 70.66 59.73 68.25 63.60 58.02 53.76 61.32
BERT:... (first-last avg.) 39.70 59.38 49.67 66.03 66.19 53.87 62.06 56.70
BERT,. s -flow 58.40 67.10 60.85 75.16 71.22 68.66 64.47 66.55
BERT}.s.-whitening 57.83 66.90 60.90 75.08 71.31 68.24 63.73 66.28
IS-BERT,... "~ 56.77 69.24 61.21 75.23 70.16 69.21 64.25 66.58
CT-BERT,.c. 61.63 76.80 68.47 77.50 76.48 74.31 69.19 72.05
* SINCSE-BERT,.5c 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
RoBERTa:.. (first-last avg.) 40.88 58.74 49.07 65.63 61.48 58.55 61.63 56.57
RoBERTa,.s.-whitening 46.99 63.24 57.23 71.36 68.99 61.36 62.91 61.73
DeCLUTR-RoBERTay .« 5241 75.19 65.52 77.12 78.63 72.41 68.62 69.99
* SINCSE-RoBERTa,, - 70.16 81.77 73.24 81.36 80.65 80.22 68.56 76.57
* SIMCSE-RoBERTa;1 4:0e 72.86 83.99 75.62 84.77 81.80 81.98 71.26 78.90

Simple Contrastive Learning of Sentence Embeddings

."in Proceedings of the 2021 Conference on Empirical Methods in Natural



@ Contrastive Learning in NLP

SImMCSE (Gao et al., 2021): simple contrastive learning of
sentence embeddings

Supervised: further adapt embeddings based on labels

(b) Supervised SimCSE

Two dogs - There are animals outdoors.
are running. label=entailment Supervised models
Th o s h InferSent-GloVe® 52.86 66.75 62.15 72.77 066.87 68.03 05.65 65.01
e pets are Slttlng_ 0_n a couch. Universal Sentence Encoder® 64.49 67.80 64.61 76.83 73.18 74.92 76.69 71.22
label=contradiction SBERT,...* 7097 7653 7319  79.09 7430 7703 7291  74.89
SBERT,...-flow 69.78  77.27 7435 8201 7746 7912 7621  76.60
SBERT.....-whitening 69.65 7757 7466 8227 7839 7952 7691  77.00
label= CT-SBERT;.... 7484 8320  78.07 8384 7793 8146 7642 7939
* SimCSE-BERT, ... 7530 84.67 80.19 8540 8082 8425  80.39  81.57
SROBERTa,.:.* 7154 7249  70.80 7874  73.69 7777 7446 7421
label= SROBERTaycc-whitening 7046 7707 7446 81.64 7643 7949 7665  76.60
* SiMCSE-RoBERTa,..... 7653 8521 8095 86.03 8257 8583 8050 8252
+ SimCSE-RoBERTa, .14e 7746 8727 8236 8666 8393 8670 8195 8376

label=

— — label=

Gao, Tianyu, Xingcheng Yao, and Dangi Chen. "SImCSE: Simple Contrastive Learning of Sentence Embeddings." in Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, 2021.



@ Contrastive Learning in NLP

SpokenCSE (Chang & Chen, 2022): improve ASR robustness
Unsupervised: learning with the paired clean/noisy sentences

e,
oy
S
s,
.

clean get me to alarm setting ]— m

—— — —— ———— ——— —————,

[
il [ gets me to alarm set ]— 9 9]
|

L NS

—> Positive L___EI_GX_GHEILOPQC_)IS___' 3 et J
--->» Negative {____Pia!_a_ugib_lg____Jl_ Q) ,{\Q/‘))(

Model SLURP ATIS TRECe6

RoBERTa 83.97 94.53 84.08

Phoneme-BERT' 83.78 9483  85.96

SimCSE 84.47 94.07 84.92

Proposed (pre-train only) 84.51 95.02 85.20

Ya-Hsin Chang and Yun-Nung Chen, “Contrastive Learning for Improving ASR Robustness in Spoken Language Understanding,” in INTERSPEECH, 2022.



@ Contrastive Learning in NLP

SpokenCSE (Chang & Chen, 2022): improve ASR robustness
Supervised: learning with self-distillation

Contrastive Learning Self Distillation
Intent=(Email, SendEmail) Lhard Looft

| Email to Nancy about tomorrow’s party }— ;U
Intent=(Email, SendEmail)
[ New email for contact ]— m

Intent=(Calendar, Event)

d1A

N ey N
J.]lL 08
sl

0.1

[ Do I have any upcoming reminder ]— E

t t—1 t—1 t—1
p p p; -D;
Model SLURP ATIS TRECS Prediction Distribution Similarity
RoBERTa 83.97 94.53 84.08
Phoneme-BERT' 83.78  94.83 8596
SimCSE 84.47 94.07 84.92
Proposed (pre-train only) 84.51 95.02 85.20

Proposed (pre-train + fine-tune) 85.26 95.10 86.36

Ya-Hsin Chang and Yun-Nung Chen, “Contrastive Learning for Improving ASR Robustness in Spoken Language Understanding,” in INTERSPEECH, 2022.



@ Language vs. Vision

Texts N Images
Self supervision (LM) Supervised learning
Large training data Not that large training data
Zero-shot transferability (ImageNet)
Ciao Bonjour

Hola

Hey

Languages

___________________________________________________________________________________________________________________________



@ CLIP: Contrastive Language-Image Pretraining

WeblmageText (WIT): a newly constructed dataset of 400 million
(image, text) pairs on the Internet

P th

aizgiz puz ‘ﬁ
’y

D

w

T, | T, | T T

—» I LTy | Ty | 10Ty LTy
—>» b LTy | Ty | 1Ty [ERN
> I LT | Ty | 3T I3 Ty
—» Iy InTy | InT2 | InT3 Iy'Tn

Patch + Position
Embedding

* Extra learnable

[class] embedding [

SEE

T T 11
o o ———~ 5 O e S

Vision Transformer (ViT)

MLP
Head
Transformer Encoder

- b o) )b o) o abod o

Linear Projection of Flattened Patches

)

v

Radford, Alec, et al. "Learning transferable visual models from natural language supervision." ICML, 2021.



@ CLIP: Contrastive Language-Image Pretraining

WeblmageText (WIT): a newly constructed dataset of 400 million
(image, text) pairs on the Internet
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Radford, Alec, et al. "Learning transferable visual models from natural language supervision." ICML, 2021.



@ Zero-Shot Image Classification
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Radford, Alec, et al. "Learning transferable visual models from natural language supervision." ICML, 2021.



@ Zero-Shot Transferability
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Radford, Alec, et al. "Learning transferable visual models from natural language supervision." ICML, 2021.



@ DALL-E 2: Image Generation with CLIP
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Ramesh, Aditya, et al. “Hierarchical text-conditional image generation with clip latents,” in CVPR, 2022.



@ Prior Training

@ GoaI:P(Zz‘ | y) produces a CLIP image embedding given a caption
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Ramesh, Aditya, et al. “Hierarchical text-conditional image generation with clip latents,” in CVPR, 2022.



@ Decoder Training

Goal:P(z | 2, y) generate images similar to the given ones

img
encoder

decoder
GLIDE (text-guided image generation)
Ramesh, Aditya, et al. “Hierarchical text-conditional image generation with clip latents,” in CVPR, 2022.



@ Inference for Image Generation

© Goal: P(x | y) generates images given text captions
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Ramesh, Aditya, et al. “Hierarchical text-conditional image generation with clip latents,” in CVPR, 2022.



@ Generated Images

Real Image

GLIDE (CLIP Guid.)
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“a group of skiers are
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Ramesh, Aditya, et al. “Hierarchical text-conditional image generation with clip latents,” in CVPR, 2022.
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@ Diverse Approaches and Applications
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Concluding Remarks

Labeling data is expensive, but we have large unlabeled data

AE / VAE
exploits unlabeled data to learn latent factors as representations
learned representations can be transfer to other tasks

Dual Learning
utilize the duality of two tasks
towards semi-supervised learning / unsupervised learning

Self-Prediction
predict one missing part of the sample given the other part

Contrastive Learning
positive pairs have similar embeddings
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