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Wide Usage of PLMs (Han et al., 2021)

◉ Increasing usage of PLMs

2



Three Types of Model Pre-Training

◉ Encoder
○ Bidirectional context
○ Examples: BERT and its variants

◉ Decoder
○ Language modeling; better for generation
○ Example: GPT, GPT-2, GPT-3

◉ Encoder-Decoder
○ Sequence-to-sequence model

○ Examples: Transformer, BART, T5
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BERT Variants

◉ Improvements to the BERT pretraining:
○ RoBERTa: mainly train BERT on more data and longer

○ SpanBERT: masking contiguous spans of words makes a harder, more useful 

pretraining task
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Need of Decoder

◉ Generation tasks
○ BERT and other pretrained encoders don’t naturally lead to autoregressive (1-word-

at-a-time) generation methods
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Pretrained Encoder

Vivian goes to [MASK] tasty tea

make / brew / craft

Pretrained Decoder

Vivian goes to make tasty tea

goes to make tasty tea
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GPT: Generative Pretrained Transformer
(Radford et al., 2018)

◉ Transformer decoder
○ Pre-trained on BooksCorpus (~7000 books; 5GB)

■ Transformer decoder with 12 layers

■ 768-dim hidden states, 3072-dim feed-forward hidden layers

■ BPE with 40,000 merges
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Pretrained Decoder

Vivian goes to make tasty tea

goes to make tasty tea

Radford, Alec, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. "Improving language understanding by generative pre-training." (2018).



GPT: Generative Pretrained Transformer 
(Radford et al., 2018)

◉ Transformer decoder
○ Supervised fine-tuning for the target tasks

○ Next word prediction is kept during fine-tuning
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GPT-2 (Radford et al., 2019)

◉ Transformer decoder
○ Pre-trained on more data

■ WebText from Raddit (40GB)

○ Good for NLG
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Radford, Alec, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. "Language models are unsupervised multitask learners.“

OpenAI blog 1, no. 8 (2019): 9.



GPT-3 (Brown et al., 2020)

◉ Transformer decoder
○ Pre-trained on more data (45TB)
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Brown, Tom, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla Dhariwal, Arvind Neelakantan et al. "Language models are few-

shot learners." Advances in neural information processing systems 33 (2020): 1877-1901.

• Common Crawl: web data over 8 years (metadata & text with filtering)
• WebText2: web pages from all outbound Reddit links from posts with 3+ upvotes
• Books1 & Books2: internet-based books corpora
• Wikipedia: English pages



OpenAI GPT Paradigm12

Model #Parameters Pre-Trained Data

GPT (Radford et al., 2018) 0.117 B 5GB

GPT-2 (Radford et al., 2019) 1.5 B 40GB

GPT-3 (Brown et al., 2020) 175 B 45TB

GPT-4 (OpenAI, 2023) ? ?
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Encoder-Decoder Pre-Training

◉ The encoder portion benefits from bidirectional context; the decoder 

portion is used to train the whole model through language modeling.

◉ Pre-training objective: span corruption (denoising)
○ implemented in preprocessing

○ similar to language modeling at the decoder side
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Thank you for inviting me to your party last week



Denoising for Pre-Training

◉ BART: output the whole sentence (Lewis et al., 2019)

◉ T5: output the missing parts (Raffel et al., 2020)
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Bidirectional Encoder Autoregressive Decoder

Thank you <X> me to your party <Y> week

Bidirectional Encoder Autoregressive Decoder

Thank you ___ me to your party ___ week

<X> for inviting <Y> last <Z> </s>

……

<s> <X> for inviting <Y> last <Z>

……

Thank you for inviting me to your party last week </s>

……

<s> Thank you for inviting me to your party last week

……

Thank you for inviting me to your party last week



Fine-Tuning for Classification

◉ BART: repeat input in decoder (Lewis et al., 2019)

◉ T5: treat it as a seq2seq task (Raffel et al., 2020)
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Bidirectional Encoder Autoregressive Decoder

A    B    C    D    E <s> A    B    C    D    E

label

Bidirectional Encoder Autoregressive Decoder

A    B    C    D    E <s>

label



Diverse Noises in BART17



Effectiveness of Denoising in T518



T5: Text-to-Text Transfer Transformer

◉ Multi-task pre-training: learning multiple tasks via seq2seq

19



BART vs. T5

◉ Differences
○ Training data size: BART > T5 (about 2x)

○ Model size: 
■ BART-large: 12 encoder, 12 decoder, 1024 hidden

■ T5-base: 12encoder, 12decoder, 768 hidden, 220M parameters (2x BERT-base)

■ T5-large: 24encoder, 24decoder, 1024hidden, 770M parameters

○ Position encoding: learnable absolute position (BART) & relative position (T5)

◉ Understanding performance

◉ Generation performance (summarization)
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SQuAD MNLI SST QQP QNLI STS-B RTE MRPC CoLA

BART 88.8 / 94.6 89.9 / 90.1 96.6 92.5 94.9 91.2 87.2 90.4 62.8

T5 86.7 / 93.8 89.9 / 89.6 96.3 89.9 94.8 89.9 87.0 89.9 61.2

CNN/DailyMail ROUGE-1 ROUGE-2 ROUGE-3

BART 45.14 21.28 37.25

T5 42.50 20.68 39.75



Fine-Tuning on Pretrained LMs

◉ (Standard) fine-tuning: use the pre-trained LMs for initialization and 

tuning the parameters for a downstream task
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Issue 1: Data Scarcity

◉ Downstream annotated data may not be large

→ More practical cases are few-shot, one-shot or even zero-shot settings
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Task MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE

Size 391K 363K 108K 67K 8.5K 5.7K 3.5K 2.5K



Fine-Tuning vs. In-Context Learning23

Model
pre-train

task-specific 

annotated data

unannotated 

data

Model
fine-tune

Model
fine-tune

Pre-Training & Fine-Tuning

Model
pre-train

Model
no learning

Model

Pre-Training & In-Context Learning

no learning



GPT-3 “In-Context” Learning24

題組一：詞彙與結構
本部分共15題，每題含一個空格。請就試題中 A、B、C、D 四個選項中
選出最適合題意的字或詞。

例：
It’s eight o’clock now. Sue ________ in her bedroom.

A. study

B. studies

C. studied

D. is studying

正確答案為D。

題型說明

少數範例



GPT-3 “In-Context” Learning

◉ Zero-Shot

◉ One-Shot

◉ Few-Shot
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◉ Traditional Fine-Tuning



Benchmark 42 NLU Tasks26



NLU Performance in SuperGLUE27



NLG Performance

◉ Human identify if the article is generated
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NLG Performance

◉ Using a new word in a sentence (few-shot)
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Issue 2: Large-Scale PLMs

◉ PLMs are larger and larger
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Model #Params #Layers

ELMo 93M 2 (BiLSTM)

BERT Base 110M 12

BERT Large 340M 24

GPT-3 Small 125M 12

GPT-3 Medium 350M 24

GPT-3 Large 760M 24

GPT-3 XL 1.3B 24

GPT-3 2.7B 2.7B 32

GPT-3 6.7B 6.7B 32

GPT-3 13B 13B 40

GPT-3 175B (“GPT-3”) 175.0B 96



Better Performance from Larger Models

◉ Language understanding performance (Ahmet & Abdullah, 2021)
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Better Performance from Large Models

◉ More types of data for pre-training → diverse capability
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What is the problem of large PLMs?



Training Cost of Large PLMs33



Training Cost of Large PLMs34

Sevilla et al., “Compute Trends Across Three Eras of Machine Learning,” in arXiv:2202.05924, 2022.



Training Cost of Large PLMs35

Sevilla et al., “Compute Trends Across Three Eras of Machine Learning,” in arXiv:2202.05924, 2022.



Large Space Requirement

◉ Each task requires a copy of a large model
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PLM

(11B params)

Task A Model

(11B params)

Task B Model

(11B params)

Task C Model

(11B params)



Practical Issues of PLMs

1) Data scarcity

2) Large PLMs
○ Higher training cost

○ Larger space requirement
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→ Solution: Prompt-Based Learning



Leveraging big pre-trained models

Prompt-Based Learning38



GPT-3 “In-Context” Learning

◉ Zero-Shot

◉ One-Shot

◉ Few-Shot
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natural language instruction and/or 

a few task demonstrations 

(提示)



Prompt-Tuning40

[CLS] Vivian likes dancing. [SEP] Vivian loves singing. [SEP] >>> neutral

[CLS] The vacation is coming soon. [SEP] The vacation was over. [SEP] >>> contradiction

[CLS] I am going to have dinner. [SEP] I am going to eat something. [SEP] >>> entailment

……

[CLS] I like strawberries. [SEP] I hate strawberries. [SEP] >>> 

contradiction

Pre-Trained LM



Prompt-Tuning41

[CLS] Vivian likes dancing. Is it true that Vivian loves singing? [SEP] >>> maybe

[CLS] The vacation is coming soon. Is it true that the vacation was over? [SEP] >>> no

[CLS] I am going to have dinner. Is it true that I am going to eat something? [SEP] >>> yes

……

[CLS] I like strawberries. Is it true that I hate strawberries? [SEP] >>> 

no

Pre-Trained LM



Prompt-Tuning

◉ Idea: convert data into natural language prompts
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→ better for few-shot, one-shot, or zero-shot cases

Pre-Trained LM

Premise? [MASK], Hypothesis 1. Prompt template

2. PLM

3. Verbalizer



Prompt-Tuning

1. Prompt template: manually designed natural language input for a task
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Premise Vivian is Jolin’s fans

Hypothesis Vivian loves Jolin.

Label 0

[CLS] Vivian is Jolin’s fans? [MASK], Vivian loves Jolin.

NLI sample datapoint

Premise? [MASK], Hypothesis

prompt template

0: “entailment”

1: “neutral”

2: “contradiction”



Prompt-Tuning

2. PLM: perform language modeling (masked LM or auto-regressive LM)
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Pre-Trained LM

Premise? [MASK], Hypothesis



Prompt-Tuning

3. Verbalizer: mapping from the vocabulary to labels
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0: “entailment”

1: “neutral”

2: “contradiction”
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Prompt-Tuning

◉ Fine-tuning PLMs based on few annotated data samples
○ No parameter tuning when zero-shot settings
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Pre-Trained LM

Premise? [MASK], Hypothesis 1. Prompt template

2. PLM

3. Verbalizer



Prompt-Tuning

◉ Prompt-tuning is better under data scarcity (Le and Rush, 2021) due to
○ It better leverages pre-trained knowledge

○ Pre-trained knowledge can be kept

47



LM-BFF: Better Few-shot Fine-tuning of Language Models 

(Gao et al., 2021)

◉ Idea: prompt + demonstration for few-shot learning

◉ template generation
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LM-BFF: Better Few-shot Fine-tuning of Language Models 

(Gao et al., 2021)

◉ Performance with RoBERTa-Large
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Issues of Discrete/Hard Prompts

◉ Difficulty of manually designing prompts
○ Prompts that humans consider reasonable is not necessarily effective for 

LMs (Liu et al., 2021)

○ Pre-trained LMs are sensitive to the choice of prompts (Zhao et al., 2021)
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https://arxiv.org/pdf/2103.10385.pdf
https://arxiv.org/pdf/2102.09690.pdf


P-Tuning (Liu et al., 2021)

◉ Idea: direct optimize the embeddings instead of prompt tokens 
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prompt search for “The capital of Britain is [MASK]”. 



Prefix-Tuning (Li and Liang, 2021)

◉ Idea: only optimize the prefix embeddings (all layers) for efficiency
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(Soft) Prompt-Tuning (Lester et al., 2021)

◉ Idea: only require storing a small task-specific prompt (one layer) for 

each task and enables mixed-task inference using the original PLMs
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(Soft) Prompt-Tuning (Lester et al., 2021)

◉ Competitive performance and better space efficiency
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(Soft) Prompt-Tuning

(Hard) Prompt-Tuning

Fine-Tuning

Prefix-Tuning (Train)

Prefix-Tuning (Infer)

(Hard) Prompt-Tuning

(Soft) Prompt-Tuning

Fine-Tuning



Instruction Tuning (Wei et al., 2022)

◉ Idea: improve model’s capability of understanding the task description
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I went to Jolin’s concert last night. I really loved her songs and dancing. It was _______

Decide the sentiment of the following sentences:

I went to Jolin’s concert last night. I really loved her songs and dancing. 

OPTIONS: - positive – negative - neutral

Detailed task instruction for LM generation

LM for sentence completion



FLAN: Finetuned LANguage Models (Wei et al., 2022)

◉ Idea: fine-tune LM to better understand task descriptions via other tasks
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Prompt v.s. Instruction Tuning (Wei et al., 2022)

◉ Prompt

57

◉ Instruction tuning

Input (Commonsense Reasoning)

Here is a goal: Get a cool sleep on summer days. 

How would you accomplish this goal? 

OPTIONS: 

-Keep stack of pillow cases in fridge. 

-Keep stack of pillow cases in oven.

Target

keep stack of pillow cases in fridge

Input (Translation)

Translate this sentence to Spanish: The new office 

building was built in less than three months.

Target

El nuevo edificio de oficinas se construyó en tres 

meses.

Input (Translation)

Translate this sentence to Spanish: The new office 

building was built in less than three months.

Target

El nuevo edificio de oficinas se construyó en tres 

meses.

LM 

Fine-tuning

Inference

Training



Task Clusters (Wei et al., 2022)58



Zero-Shot Performance of FLAN59



Zero-Shot Performance of FLAN

◉ Combine with prompt-tuning

60

◉ Model size requirement



T0: Multitask Prompted Training (Sanh et al., 2022)61



Task Clusters (Sanh et al., 2022)62



Prompt Templates (Sanh et al., 2022)63



Performance of T064



Effect of #Prompts65



Chain-of-Thought (CoT) (Wei et al., 2022)66



Chain-of-Thought (CoT) (Wei et al., 2022)67



Trend of Prompt-Based Research68

http://pretrain.nlpedia.ai/



Prompting Paradigm (Liu et al., 2021)69

: unsupervised

: supervised

: textual prompt



Prompting Typology (Liu et al., 2021)70

Pre-trained Models

Prompt Engineering

Answer Engineering

Multi-Prompt 

Learning

Prompt-based 

Training Strategies

Prompting

Left-to-Right LM

Masked LM

Prefix LM

Encoder-Decoder

GPT; GPT-2; GPT-3

BERT; RoBERTa

UniLM

T5; BART



Prompting Typology (Liu et al., 2021)71

Pre-trained Models

Prompt Engineering

Answer Engineering

Multi-Prompt 

Learning

Prompt-based 

Training Strategies

Prompting

Shape

Human 

Effort

Cloze

Prefix

Hand-crafted

Automated
Discrete

Continuous
Prefix-Tuning; 

PromptTuning



Prompting Typology (Liu et al., 2021)72

Pre-trained Models

Prompt Engineering

Answer Engineering

Multi-Prompt 

Learning

Prompt-based 

Training Strategies

Prompting

Shape

Human 

Effort

Token

Span

Hand-crafted

Automated
Discrete

Continuous

Sentence GPT-3; Prefix-Tuning

LM-BFF



Prompting Typology (Liu et al., 2021)73

Pre-trained Models

Prompt Engineering

Answer Engineering

Multi-Prompt 

Learning

Prompt-based 

Training Strategies

Prompting

LM-BFF

Prompt 

Ensemble

Prompt 

Augmentation

Prompt 

Decomposition

Prompt 

Sharing

Prompt 

Composition



Prompting Typology (Liu et al., 2021)74

Pre-trained Models

Prompt Engineering

Answer Engineering

Multi-Prompt 

Learning

Prompt-based 

Training Strategies

Prompting

Parameter 

Updating

Training 

Size

Tuning-free 

Prompting

Promptless

Fine-Tuning

Few/Zero-shot

Full

Fixed-prompt 

LM Tuning

Fixed-LM 

Prompt Tuning

Prompt+LM

Tuning

BERT; RoBERTa

GPT-3

Prefix-Tuning

T5

P-Tuning

GPT-3

PTR



Prompting Typology (Liu et al., 2021)75

Pre-trained Models

Prompt Engineering

Answer Engineering

Multi-Prompt 

Learning

Prompt-based 

Training Strategies

Prompting

Parameter 

Updating

Training 

Size

Tuning-free 

Prompting

Promptless

Fine-Tuning

Few/Zero-shot

Full

Fixed-prompt 

LM Tuning

Fixed-LM 

Prompt Tuning

Prompt+LM

Tuning

LM 

Params

Prompt 

Params

Tuned         Tuned Additional



Concluding Remarks

◉ (Hard) Prompt-Tuning
○ (Hard) Prompt-Tuning: manually designed natural language prompts

■ Human-understandable prompts

■ Sensitive to choices of prompts

○ LM-BFF: prompt-tuning + demonstration + template generation

■ Better performance

◉ (Soft) Prompt-Tuning
○ P-Tuning: tuning the input (prompt) embeddings

■ Better performance via soft prompts

○ Prefix-Tuning: only optimize the prefix embeddings (all layers)

■ Better training time/space efficiency

◉ Instruction Tuning: tuning LMs for understanding task instructions
○ Better zero-shot performance

76
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