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©® Word Embedding Polysemy Issue

@® Words are polysemy
An apple a day, keeps the doctor away.
Smartphone companies including apple, ...

@® However, their embeddings are NOT polysemy

@ |[ssue
Multi-senses (polysemy)
Multi-aspects (semantics, syntax)




O RNNLM

@ Idea: condition the neural network on all previous words and tie the weights at
each time step
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This LM producing contextual word representations at each position




©® TagLM -“Pre-ELMo”

@ Idea: train LM on big unannotated data to provide the contextual embeddings
for the target task - self-supervised learning
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Peters et al., “Semi-supervised sequence tagging with bidirectional language models,” in ACL, 2017.



©® ELMo: Embeddings from Language Models

@ Idea: contextualized word representations
Learn word vectors using long contexts instead of a context window
Learn a deep LM and use all its layers in prediction
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Peters et al., “Deep Contextualized Word Representations”, in NAACL-HLT, 2018.



e BERT: Bidirectional Encoder
Representations from Transformers
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@ Idea: contextualized word representations ‘

Learn word vectors using long contexts *—Lmear
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Devlin et al., “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”, in NAACL-HLT, 2019.
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@ BERT #1 - Masked Language Model

@ I|dea: language understanding is bidirectional while LM only uses left
or right context

Use the output of the 0.1% | Aardvark

masked word’s position
to predict the masked word

Possible classes:
All English words 10%  Improvisation

0% | Zyzzyva

[ FFNN + Softmax ]
Randomly mask 15% of tokens BERT
* Too little: expensive to train
* Too much: not enough
context
[CLS] [MASK]

http://jalammar.github.io/illustrated-bert/
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©° BERT #1 - Masked Language Model

BERT (Ours) OpenAl GPT

Devlin et al., “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”, in NAACL-HLT, 2019.
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<’ BERT #2 — Next Sentence Prediction

@ Idea: modeling relationship between sentences
QA, NLI etc. are based on understanding inter-sentence relationship
Input = (cLs] the man went to [MASK] store [SEP]
he bought a gallon [MASK] milk [SEP]

Label = 1snext

[CLS] the man [MASK] to the store [SEP]

Input
penguin [MASK] are flight ##less birds [SEP]

Label = notnext

Devlin et al., “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”, in NAACL-HLT, 2019.
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@ BERT #2 — Next Sentence Prediction

® Ildea: modeling relationship between sentences

Predict likelihood
that sentence B
belongs after

1%  IsNext

99% NotNext

sentence A
[ FFNN + Softmax ]
BERT
Tokenized
|n p Ut [CLS] [MASK] [SEP]

http://jalammar.github.io/illustrated-bert/
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@; BERT — Input Representation

@ Input embeddings contain
Word-level token embeddings
Sentence-level segment embeddings
Position embeddings

Input [CLS] | my dog is ( cute | [SEP] he | likes H play ‘ ( ##ing 1
Token
Embeddings E[CLS] Emy Edog EIS Ecute E[SEP] Ehe Elikes Eplay E##ing
+ + + + + + + + + +
Segment
Embeddings EA EA EA EA EA EA EB EB EB EB
L L - - L o L - L L -
Position
Embeddings Eo E1 E2 E3 E4 E5 E6 E7 E8 E9

Devlin et al., “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”, in NAACL-HLT, 2019.



< BERT Training

@ Training data: Wikipedia + BookCorpus
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@; BERT Fine-Tuning for Understanding Tasks

@ Idea: simply learn a classifier/taaaer built on the top laver for each

target task
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Devlin et al., “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
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£ BERT Overview

1 - Semi-supervised training on large amounts
of text (books, wikipedia..etc).

The medel is trained on a certain task that enables it to grasp
patterns in language. By the end of the training process,

BERT has language-processing abilities capable of empowering
many models we later need to build and train in a supervised way.

Semi-supervised Learning Step

g = mmm mmm m—— == === =

[
I Model: BERT
I

I Dataset:

WIKIPEDIA
ic Enzyblopidc

Obijective: (langauge modeling)

\ —

http://jalammar.github.io/illustrated-bert/

Predict the masked word l

2 - Supervised training on a specific task with a
labeled dataset.

Supervised Learning Step

— — — — om— om— —
”~ \
. 75% | Spam
' Classifier .
25% | Not Spam

| i
I Model:

(pre-trained
I in step #1) Ox BERT

I Email message Class

Buy these pills Spam

I Dataset: Win cash prizes Spam
Dear Mr. Atreides, please find attached... Not Spam

\ /



BERT Fine-Tuning Results

Effect of Pre-training Task

B BERT-Base W No Next Sent W Left-to-Right & No Next Sent
B Left-to-Right & No Next Sent + BiLSTM
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Devlin et al., “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”, in NAACL-HLT, 2019.



17@’ BERT Results on NER

Model Description CONLL 2003
F1
TagLM (Peters+, 2017) LSTM BIiLM in BLSTM Tagger 91.93
ELMo (Peters+, 2018) ELMo in BLSTM 92.22
BERT-Base (Devlin+, 2019) Transformer LM + fine-tune 924
CVT Clark Cross-view training + multitask learn 92.61
BERT-Large (Devlin+, 2019) Transformer LM + fine-tune 92.8
Flair Character-level language model 93.09

Devlin et al., “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”, in NAACL-HLT, 2019.



@9 BERT Results with Different Model Sizes

@ Improving performance by increasing model size

= MNLI (400k) = MRPC (3.6 k)
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Devlin et al., “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”, in NAACL-HLT, 2019.



< BERT for Contextual Embeddings

@ Idea: use pre-trained BERT to get contextualized word embeddings
and feed them into the task-specific models

Generate Contexualized Embeddings each token'’s path can be used as a
feature representing that token.
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http://jalammar.github.io/illustrated-bert/ But which one should we use?



BERT Contextual Embeddings Results on NER

What is the best contextualized embedding for “Help” in that context?
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http://jalammar.github.io/illustrated-bert/



@ ERNIE: Enhanced Representation through
kNowledge IntEgration

« BERT models local cooccurrence between tokens, while characters
are modeled independently

A(ha), B (er), ;&(bin) instead 45 & & (Harbin)
« ERNIE incorporates knowledge by masking semantic units/entities

Learned by BERT Learned by ERNIE
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@ Concluding Remarks

Prc%gtp))iﬁtties
@ Contextualized embeddings learned from
masked _LM via Transformers prowde 4 x
informative cues for transfer learning eod
@® BERT — a general approach for learning —
contextual representations from il g =
Transformers and benefiting language ——
understanding N B
. Positiovnal D
Pre-trained BERT: =neoding £
https://github.com/google-research/bert Embedding
https://github.com/huggingface/transformers mpTutS

Semi-supervised Learning Step

Model:

BERT
7

Dataset:

Predict the masked word

Objective: (langauge modeling)

e T ——


https://github.com/google-research/bert
https://github.com/huggingface/transformers
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