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©® Meaning Representations in Computers
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©® Knowledge-Based Representation

O] Hypernyms (is-a) relationships of WordNet

\

from nltk.corpus import wordnet as wn \

panda = wn.synset('panda.n.01") [,,,0,0; Ve,,,-c,e)
hyper = lambda s: s.hypernyms()
list (panda.closure(hyper) [momar) ( e ) ( — )

[Synset('procyonid.n.01'),
Synset('carnivore.n.01'), (”"’C“'b"cg ( C"’””"c’) (gas gm’@
Synset('placental.n.01’),

Synset(‘'mammal.n.01'),
Synset('vertebrate.n.01'),
Synset('chordate.n.01'),

Issues:
= newly-invented words

Synset(‘animal.n.01"), = Subjective
Synset('organism.n.01'), = annotation effort
gy stulidoeshlnein oL, - difficult to compute word similarity

Synset('whole.n.02'),

Synset('object.n.01'),
Synset('physical_entity.n.01'"),
Synset('entity.n.01')]
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O Corpus-Based Representation

@ Atomic symbols: one-hot representation

car [000000100...0]

4

Car

Issues: difficult to compute the similarity (i.e. comparing “car” and “motorcycle”)

[000000100...0] Aano [001000000...0]=0
car motorcycle



(o Corpus-Based Representation

@® Neighbor-based representation
Co-occurrence matrix constructed via neighbors
Neighbor definition: full document vs. windows

full document

word-document co-occurrence matrix gives general topics
- “Latent Semantic Analysis”

windows
context window for each word
—> capture syntactic (e.g. POS) and semantic information




@ Window-Based Co-occurrence Matrix

similarity > 0

® Example v
' Counts | |Jlove Jenjoy] Al deep Ilearning

Window length=1 | ol 2 1 0 0 0

Left or right context ove 21| 0 0 1 0

Corpus: | | jove Al enjoy 1| O 0 0 0 1

| love deep learning. Al ol 1 0 0 0 0

| enjoy learning. deep 0 1 0 0 0 1

learning O O ] 1 0 1 0

Issues:

= matrix size increases with vocabulary | |
= high dimensional e
= sparsity = poor robustness




@ Low-Dimensional Dense Word Vector

@® Method 1: dimension reduction on the matrix
@® Singular Value Decomposition (SVD) of co-occurrence matrix X

m r r m

n Vs 0 v

n = nUUL r S r V;
1 0 g

_ X U S v

approximate 1

m k k m

‘ ‘ ‘ S]s 0 v

n = nUUU--| k| S | &k V.
|| 0 s

X U S V'



@ Low-Dimensional Dense Word Vector

@® Method 1: dimension reduction on the matrix

@® Singular Value Decomposition (SVD) of co-occurrence matrix X

semantic relations

HAWAII
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TEAL
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= THEGARRYAN

OATE
DEATING

syntactic relations

Issues:

= computationally expensive:
O(mn?) when n<m for nxm matrix

= difficult to add new words

|dea: directly learn low-
dimensional word vectors




® Low-Dimensional Dense Word Vector

@ Method 2: directly learn low-dimensional word vectors
Learning representations by back-propagation. (Rumelhart et al., 1986)
A neural probabilistic language model (Bengio et al., 2003)
NLP (almost) from Scratch (Collobert & Weston 2008)

(Pennington et al., 2014)
As known as “Word Embeddings”

Male-Female Verb Tense Country-Capital



@ Language Modeling
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@ Language Modeling

® Goal: estimate the probability of a word sequence
P(wla'” awm)

® Example task: determinate whether a sequence is grammatical or makes more
sense

If P(recognize speech)

recognize speech > P(wreck a nice beach)
habne

wreck a nice beach Output = “recognize speech”
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@ N-Gram Language Modeling

® Goal: estimate the probability of a word sequence

P(UJl, T me-)
® N-gram language model
Probability is conditioned on a window of (n-1) previous words

P(wl, ce ,wm) = HP(w@ \ (I 7wi—1) ~ Hp(wz | Wi—(n—1), " " 77«Uz'—1)
i=1 i=1

Estimate the probability based on the training data

C (nice each) < Count of “nice beach”in the training data
P(beach|nice) =

C(nice) <~ Count of “nice” in the training data



@® N-Gram Language Modeling

@® Training data:
The dogran ......
The cat jumped ......

P(jumped | dog) =\G\ 0.0001
P(ran | cat) =% 0.0001

» The probability is not accurate

give some small probability
—> smoothing

» Reason: impossible to collect all possible texts as training data
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@® Language Modeling

Feed-Forward Neural Language Model

@®



@ Neural Language Modeling

@® |dea: estimate P(w; | wi—(n-1)," -+ ,w;—1) not from count, but from NN prediction

P(“wreck a nice beach”) = P(wreck | START) P(a | wreck) P(nice | a) P(beach | nice)

P(next word is P(nextwordis  P(next word is
“‘wreck”) P(next word is “a”) “nice”) “beach”)
444 4414 HHM HHM
Neural Neural Neural Neural
Network Network Network Network

¢ ¢ ¢ %

vector of “START” vector of “wreck”  vector of “a” vector of “nice”




Neural Language Modeling

§ = softmax(W @ g (WM g + o)) 4+ W) g 4 p3))

i-th output = P(w; = i| context)
Probability distribution
of the next word

context vector




@ Neural Language Modeling

@ The input layer (or hidden layer) of the related words are close

h, 4
do% orabbit
o

cat

>h1

If P(jJump | cat) is large, P(jump | dog) increases accordingly (even there is not
“... dog jumps ...” in the data)
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@® Language Modeling

Recurrent Neural Network Language Model (RNNLM)

®



©® Recurrent Neural Network

@® |dea: condition the neural network on all previous words and tie the weights at
each time step

@® Assumption: temporal information matters



word prob dist

@ RNN Language Modeling

s
=

context vector

P(next word is P(next word is P(next word is P(next word is
“‘wreck”)

(1P t]

o e e =
- i

vector of “START” vector of “wreck” vector of “a” vector of “nice”

Idea: pass the information from the previous hidden layer to leverage all contexts




@ Recurrent Neural Network
sl R R KZAIRNN
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@ Recurrent Neural Network

®



@ RNNLM Formulation

@® At each time step,

hy = J(Wht_l + UCL’t) probability of the next word
1, = softmax(V hy) Tt 1
,\ 000 \
P(riyr = wj | o1, ) = G v

vector of the current word
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@ Recurrent Neural Network Definition

St — O'(WSt_l + U.CCt)

0() : tanh, ReLU
o; = softmax(V s)

Ot—I 0
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@ Model Training

@ All model parameters § = {U, |74 W} can be updated by
gt — 0 — v C(6Y

Y1 Yi Y1 target
: $ tow
O (-1 O Ops1 predlcted
bl
S

:? V%s V
O Unf%{} CT)T)OTOT

9
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@® Recurrent Neural Network

Training via Backpropagation through Time (BPTT)



@ Backpropagation

Layerl -1

Layer |

Backward Pass

5t = o'(zH) o vC(y)

5L—1 _ U,(ZL_1> o (WL)TéL

5[ _ O'/(Zl) ® (Wl—l—l)Té‘H—l

Forward Pass
d=wle +pl

at = o(z1)




. C(6)
€@ Backpropagation i
tj
. Layerl1 Layer L-1 Layer L
0 St St Vgc(:y)

oy, Backward Pass

oc | =d(hyevey)

oy, 5L—1 _ O_/(ZL—l) o) (WL>T5L
oC |

%Y,

5[ _ (T’(Zl) o) (WZ—H)T(SZ—H




€@ Backpropagation through Time (BPTT)

@® unfold

R -

\’4 W % S \% ; \4 ;. =

o 1.0

UT TU TU TU — vC (y)

x X, x, X, _, aC
Input: init, X;, X5, ..., X X2 I2 o0,
Output; o, | -
Target: y, ’ %€

= 2
I y_ ac

init o,



€ Backpropagation through Time (BPTT)

@ Unfold
O
VT VT

s v w St-1 VTS: t1
O » —H—0 W'?w'ow'
U

Unfold
¥ 3

Input: init, X, X5, ..., X; X2 Iz

Output: o,
Target: y, I

X1
—_—

init




€@ Backpropagation through Time (BPTT)

@® unfold
é o, 0, o, - o
SV(T) Y W:CT)S'"’W:CTDS’W gw , 4%
Unfold
UI JU IU IU — I
Input: init, X, X5, ..., X;
Output: o,
Target: y,

i/

init



€@ Backpropagation through Time (BPTT)

@ Unfold
A o0, o o
4 y VIS q. VT
SOD :> W:OIW: > —

Input: init, X, X5, ..., X;
Output: o,
Target: y,

(2) &=
v , g g _ 9¢0)  9Ct
U .+ | — bointer ou®2 oy
X1 p ** the same Ul g _ oC(0) B oC(0)
memory : 0 @)
<—_ Dointer oUu oU

Weﬁightﬂs are tieql togﬁether




@ Backpropagation through Time (BPTT)

@ Unfold

w 8 4 kS 3,
‘T =) >0~ 0O—>
UT TU TU

Input: init, X, X5, ..., X;

Output: o,
Target: y,

init




® BPTT

Compute s;, S,, S3, Sy -.....
0 P Forc® = Forc®
Backward Pass: For @ = Eor ¢

Y1 Yo

‘Cm tc(z) fc(?’) %c@%)
T
. 1
= s

e
W 2
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® RNN Training Issue

@® The gradient is a product of Jacobian matrices, each associated with a step in
the forward computation

@® Multiply the same matrix at each time step during backprop

The gradient becomes very small or very large quickly
—> vanishing or exploding gradient


http://www-dsi.ing.unifi.it/~paolo/ps/tnn-94-gradient.pdf
http://www.jmlr.org/proceedings/papers/v28/pascanu13.pdf

Rough Error Surface

0.35
0.30
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0.20
0.15
0.10
0.05

1S0D

The error surface is either very flat or very steep



http://www-dsi.ing.unifi.it/~paolo/ps/tnn-94-gradient.pdf
http://www.jmlr.org/proceedings/papers/v28/pascanu13.pdf

(45 Vanishing/Exploding Gradient Example
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Solution for Exploding Gradient: Clipping

clipped gradient
TTTITIELT S

Idea: control the gradient value to avoid exploding

Algorithm 1 Pseudo-code for norm clipping
&+ %5
if ||g|| > threshold then
g ya threshold -

el 8
end if

Parameter setting: values from half to ten times
the average can still yield convergence


http://www.jmlr.org/proceedings/papers/v28/pascanu13.pdf

@ Solution for Vanishing Gradient: Gating

@® RNN models temporal sequence information
can handle “long-term dependencies” in theory

® ©® ®
TT(?T

[

A » A » A > A > A

d & o ¢&

® ® ® 6? &>

T T T T T “I grew up in France...
A A A A A A | speak fluent French.”

fffffff d6 b6

Issue: RNN cannot handle “long-term dependencies” due to vanishing gradient
f —> gating directly encodes long-distance information



® Long Short-Term Memory (LSTM)

[ ] O —»

Neural Network Pointwise Vector

=

Layer Operation Transfer Concatenate Copy
LSTM @
( A
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Hochreiter and Schmidhuber, k&

®_

J 997. [link]



http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf

® Gated Recurrent Unit (GRU)

[ ] O—P>—>—<

Neural Network Pointwise Vector
Layer Operation Transfer

sy ( ) @

; r N\ T
A

Concatenate Copy

17 ]
i t < ® @ \_’
A Oy 2 A
lo| o] [tanh]

\| ) J

@ \_ D
Cho et al., "Learning phrase representations using RNN encoder-decoder for statistical machine translation,” arXiv preprint arXiv:1406.1078, 2014.
Mninll



http://arxiv.org/pdf/1406.1078v3.pdf

@ Extension: Bidirectional RNN

y o o ® ®
[ f [ f hi = f(WX, +Vhii +b)
" A A A

A Z’ = f(Wxt + vgtﬂ + E)
\ \ \ \ v, = g(Ulhish)+c)



@ Extension: Deep Bidirectional RNN

[ /“ f [ (i) —(@i) =) =)

h: = f(W h(‘”+V hioi+b

p—

h? El) f(W h(‘ b +V(1)k§l+)1 +Zm)
—=(L) «(L)
h(l) V= g(U[hr ;hr ]+ C)



© RNN Applications
RNNZINEREIR
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@ How to Frame the Learning Problem?

@® The learning algorithm f is to map the input domain X into the output domain Y

f: X >Y

@® Input domain: word, word sequence, audio signal, click logs
@® Output domain: single label, sequence tags, tree structure, probability distribution
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(56 Input Domain — Sequence Modeling

@® |dea: aggregate the meaning from all words into a vector

® Method:
Basic combination: average, sum Nedim
Neural combination: A
Recursive neural network (RvNN) - [ )
Recurrent neural network (RNN) (this) 0206 03 --- 0.4
Convolutional neural network (CNN) 15 4% - ;
Transformer (specification) 0908 0.1 --- 0.1
ﬁ - -
(have) 0.1030.1--- 0.7]
HE 05 0.0 0.6 -+ 0.4]
(sincerity) ‘- J
How to compute & = [21 @ @3 -+ an]




@ Sentiment Analysis

@® Encode the sequential input into a vector using RNN

Output

Y1

h

E:

Eoo

Y2

frUW T

E

1

(0000 (00ee]| (ecee oooo]
= MRS 7] Al = Yu
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(59, Output Domain — Sequence Prediction

® POS Tagging

"HERSRKEMNEE" —> #HE/VV RE/PN SK/NR #%FI/NN #/DEG EE/NN
@® Speech Recognition

N M — ) ki

@® Machine Translation

“How are you doing today?” — "{REFIE?"
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Sequential Output
Aligned Sequential Pairs (Tagging)



@ pPOS Tagging

@® Tag a word at each timestamp
Input: word sequence
Output: corresponding POS tag sequence

N VA
Oy 0,
%4 VT
w I S
W %%
TU U
X X
& &



® Natural Language Understanding (NLU)

@® Tag a word at each timestamp
Input: word sequence
Output: I0B-format slot tag and intent tag

.

(<START> just sent email to bob about fishing this weekend <END> |

c e se b oo Lo L]

B-contact_name B-subject I-subjectl-subject send_email

- send_email(contact_name="bob”, subject="fishing this weekend”)
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Sequential Output

Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)



@ Machine Translation

@® cCascade two RNNSs, one for encoding and one for decoding
Input: word sequences in the source language
Output: word sequences in the target language

[Awesome saucm
Y1

decoder

/"> encoder <‘\\
h, EE \Nh2>(gﬂ h, [iﬂ |§| ‘E}
[+|0} O

r[ij\ J

(0o00e| (ecee| (eceo]

\ B iy &1 /




® cChit-Chat Dialogue Modeling

@® cCascade two RNNSs, one for encoding and one for decoding
Input: word sequences in the question
Output: word sequences in the response

W 1 am fine <EOL>

L L]

= = =

How are you <EOL>

Temporal ordering for input and output may be different
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S = O'(WSt_l 4 U.fCt) 7 Unfold i
o; = softmax(V s;) g T
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@ RNN Applications
Sequential Input: Sequence-Level Embedding
Sequential Output: Tagging / Seq2Seq (Encoder-Decoder)
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