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Meaning Representations in Computers4

Knowledge-Based 

Representation

Corpus-Based 

Representation

How to represent words in computers?
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Knowledge-Based Representation

◉ Hypernyms (is-a) relationships of WordNet

6

Issues: 

▪ newly-invented words

▪ subjective

▪ annotation effort

▪ difficult to compute word similarity
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Corpus-Based Representation

◉ Atomic symbols: one-hot representation

8

[0 0 0 0 0 0 1 0 0 … 0]

[0 0 0 0 0 0 1 0 0 … 0] [0 0 1 0 0 0 0 0 0 … 0]AND = 0

Idea: words with similar meanings often have similar neighbors

Issues: difficult to compute the similarity (i.e. comparing “car” and “motorcycle”)

car

car

car motorcycle



Corpus-Based Representation

◉ Neighbor-based representation

o Co-occurrence matrix constructed via neighbors

o Neighbor definition: full document vs. windows

9

full document

word-document co-occurrence matrix gives general topics

→ “Latent Semantic Analysis”

windows

context window for each word 

→ capture syntactic (e.g. POS) and semantic information



Window-Based Co-occurrence Matrix

◉ Example

o Window length=1

o Left or right context

o Corpus:

10

I love AI.

I love deep learning.

I enjoy learning.

Counts I love enjoy AI deep learning

I 0 2 1 0 0 0

love 2 0 0 1 1 0

enjoy 1 0 0 0 0 1

AI 0 1 0 0 0 0

deep 0 1 0 0 0 1

learning 0 0 1 0 1 0

similarity > 0

Issues:

▪ matrix size increases with vocabulary

▪ high dimensional

▪ sparsity → poor robustness

Idea: low dimensional word vector



Low-Dimensional Dense Word Vector

◉ Method 1: dimension reduction on the matrix

◉ Singular Value Decomposition (SVD) of co-occurrence matrix X

approximate

11



Low-Dimensional Dense Word Vector

◉ Method 1: dimension reduction on the matrix

◉ Singular Value Decomposition (SVD) of co-occurrence matrix X

semantic relations
Rohde et al., “An Improved Model of Semantic Similarity Based on Lexical Co-Occurrence,” 2005.

syntactic relations

Issues:

▪ computationally expensive: 

O(mn2) when n<m for nxm matrix

▪ difficult to add new words

Idea: directly learn low-

dimensional word vectors

12



Low-Dimensional Dense Word Vector

◉ Method 2: directly learn low-dimensional word vectors

○ Learning representations by back-propagation. (Rumelhart et al., 1986)

○ A neural probabilistic language model (Bengio et al., 2003)

○ NLP (almost) from Scratch (Collobert & Weston, 2008)

○ Recent and most popular models: word2vec (Mikolov et al. 2013) and Glove 

(Pennington et al., 2014)

• As known as “Word Embeddings”

13



語言模型

Language Modeling14
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Language Modeling

◉ Goal: estimate the probability of a word sequence

◉ Example task: determinate whether a sequence is grammatical or makes more 

sense

16

recognize speech

or

wreck a nice beach Output =  “recognize speech”

If P(recognize speech)

> P(wreck a nice beach)
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N-Gram Language Modeling

◉ Goal: estimate the probability of a word sequence

◉ N-gram language model
○ Probability is conditioned on a window of (n-1) previous words

○ Estimate the probability based on the training data

18

𝑃 beach|nice =
𝐶 nice each

𝐶 nice Count of “nice” in the training data

Count of “nice beach” in the training data

Issue: some sequences may not appear in the training data



N-Gram Language Modeling

◉ Training data:
○ The dog ran ……

○ The cat jumped ……

19

P( jumped | dog ) = 0

P( ran | cat ) = 0
give some small probability

→ smoothing

0.0001

0.0001

➢ The probability is not accurate

➢ Reason: impossible to collect all possible texts as training data



Outline

◉ Meaning Representations
○ Knowledge-Based Representation
○ Corpus-Based Representation

◉ Language Modeling
○ N-gram Language Model
○ Feed-Forward Neural Language Model
○ Recurrent Neural Network Language Model (RNNLM)

◉ Recurrent Neural Network
○ Definition
○ Training via Backpropagation through Time (BPTT)
○ Training Issue
○ Extension

◉ RNN Applications
○ Sequential Input
○ Sequential Output

■ Aligned Sequential Pairs (Tagging)
■ Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

20



Neural Language Modeling

◉ Idea: estimate not from count, but from NN prediction

21

Neural 

Network

vector of “START”

P(next word is 

“wreck”)

Neural 

Network

vector of “wreck”

P(next word is “a”)

Neural 

Network

vector of “a”

P(next word is 

“nice”)

Neural 

Network

vector of “nice”

P(next word is 

“beach”)

P(“wreck a nice beach”) = P(wreck | START) P(a | wreck) P(nice | a) P(beach | nice)



Neural Language Modeling22

Bengio et al., “A Neural Probabilistic Language Model,” in JMLR, 2003.

input

hidden

output

context vector

Probability distribution 

of the next word



Neural Language Modeling

◉ The input layer (or hidden layer) of the related words are close

○ If P(jump | cat) is large, P(jump | dog) increases accordingly (even there is not 

“… dog jumps …” in the data)

23

h1

h2

dog

cat

rabbit

Smoothing is automatically done 

Issue: fixed context window for conditioning



Outline

◉ Meaning Representations
○ Knowledge-Based Representation
○ Corpus-Based Representation

◉ Language Modeling
○ N-gram Language Model
○ Feed-Forward Neural Language Model
○ Recurrent Neural Network Language Model (RNNLM)

◉ Recurrent Neural Network
○ Definition
○ Training via Backpropagation through Time (BPTT)
○ Training Issue
○ Extension

◉ RNN Applications
○ Sequential Input
○ Sequential Output

■ Aligned Sequential Pairs (Tagging)
■ Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

24



Recurrent Neural Network

◉ Idea: condition the neural network on all previous words and tie the weights at 

each time step

◉ Assumption: temporal information matters

25



RNN Language Modeling26

vector of “START”

P(next word is 

“wreck”)

vector of “wreck”

P(next word is 

“a”)

vector of “a”

P(next word is 

“nice”)

vector of “nice”

P(next word is 

“beach”)

input

hidden

output

context vector

word prob dist

Idea: pass the information from the previous hidden layer to leverage all contexts



詳細解析鼎鼎大名的RNN

Recurrent Neural Network27
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RNNLM Formulation

◉ At each time step,

29

…………

……

……

vector of the current word

probability of the next word
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Recurrent Neural Network Definition31

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

: tanh, ReLU



Model Training

◉ All model parameters                                    can be updated by

32

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

yt-1 yt+1yt target

predicted
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Backpropagation34
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Backpropagation35
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Backpropagation through Time (BPTT)

◉ Unfold

○ Input: init, x1, x2, …, xt

○ Output: ot

○ Target: yt

36
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Backpropagation through Time (BPTT)

◉ Unfold

○ Input: init, x1, x2, …, xt

○ Output: ot

○ Target: yt
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Backpropagation through Time (BPTT)

◉ Unfold

○ Input: init, x1, x2, …, xt

○ Output: ot

○ Target: yt
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Backpropagation through Time (BPTT)

◉ Unfold

○ Input: init, x1, x2, …, xt

○ Output: ot

○ Target: yt
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Backpropagation through Time (BPTT)

◉ Unfold

○ Input: init, x1, x2, …, xt

○ Output: ot

○ Target: yt

40
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BPTT41

For 𝐶(1)Backward Pass:
For 𝐶(2)

For 𝐶(3)For 𝐶(4)

Forward Pass: Compute s1, s2, s3, s4 ……

y1 y2 y3

x1
x2 x3

o1 o2
o3

init

y4

x4

o4

𝐶(1) 𝐶(2) 𝐶(3) 𝐶(4)

s1 s2 s3
s4
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RNN Training Issue

◉ The gradient is a product of Jacobian matrices, each associated with a step in 

the forward computation

◉ Multiply the same matrix at each time step during backprop

43

The gradient becomes very small or very large quickly

→ vanishing or exploding gradient

Bengio et al., “Learning long-term dependencies with gradient descent is difficult,” IEEE Trans. of Neural Networks, 1994. [link]

Pascanu et al., “On the difficulty of training recurrent neural networks,” in ICML, 2013. [link]

http://www-dsi.ing.unifi.it/~paolo/ps/tnn-94-gradient.pdf
http://www.jmlr.org/proceedings/papers/v28/pascanu13.pdf


w2

w1

C
o
s
t

Rough Error Surface44

The error surface is either very flat or very steep

Bengio et al., “Learning long-term dependencies with gradient descent is difficult,” IEEE Trans. of Neural Networks, 1994. [link]

Pascanu et al., “On the difficulty of training recurrent neural networks,” in ICML, 2013. [link]

http://www-dsi.ing.unifi.it/~paolo/ps/tnn-94-gradient.pdf
http://www.jmlr.org/proceedings/papers/v28/pascanu13.pdf


Vanishing/Exploding Gradient Example45
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Solution for Exploding Gradient: Clipping46

w2

w1

C
o

s
t

clipped gradient Idea: control the gradient value to avoid exploding

Parameter setting: values from half to ten times 

the average can still yield convergence

Pascanu et al., “On the difficulty of training recurrent neural networks,” in ICML, 2013. [link]

http://www.jmlr.org/proceedings/papers/v28/pascanu13.pdf


Solution for Vanishing Gradient: Gating

◉ RNN models temporal sequence information
○ can handle “long-term dependencies” in theory

47

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Issue: RNN cannot handle “long-term dependencies” due to vanishing gradient

→ gating directly encodes long-distance information

“I grew up in France…

I speak fluent French.”



Long Short-Term Memory (LSTM)48

Hochreiter and Schmidhuber, ”Long short-term memory,” in Neural Computation, 1997. [link]

LSTM

http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf


Gated Recurrent Unit (GRU)49

Cho et al., ”Learning phrase representations using RNN encoder-decoder for statistical machine translation,” arXiv preprint arXiv:1406.1078, 2014. 

[link]

GRU

http://arxiv.org/pdf/1406.1078v3.pdf


Extension: Bidirectional RNN50

ℎ = ℎ; ℎ represents (summarizes) the past and future around a single token



Extension: Deep Bidirectional RNN51

Each memory layer passes an intermediate representation to the next



RNN各式應用情境

RNN Applications52
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How to Frame the Learning Problem?

◉ The learning algorithm f is to map the input domain X into the output domain Y

◉ Input domain: word, word sequence, audio signal, click logs

◉ Output domain: single label, sequence tags, tree structure, probability distribution

54

YXf →:

Network design should leverage input and output domain properties
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Input Domain – Sequence Modeling

◉ Idea: aggregate the meaning from all words into a vector

◉ Method:
○ Basic combination: average, sum

○ Neural combination: 
✓ Recursive neural network (RvNN)

✓ Recurrent neural network (RNN)

✓ Convolutional neural network (CNN)

✓ Transformer

56

How to compute

規格

(specification)

誠意

(sincerity)

這

(this)

有

(have)

N-dim



誠意這 規格 有

x4

h4

Sentiment Analysis

◉ Encode the sequential input into a vector using RNN

57

1x

2x

……

1y

2y

… …

…

…

…

Input Output

My
Nx

RNN considers temporal information to learn sentence vectors as classifier’s input
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Output Domain – Sequence Prediction

◉ POS Tagging

◉ Speech Recognition

◉ Machine Translation

59

“推薦我台大後門的餐廳” 推薦/VV我/PN台大/NR後門/NN的/DEG餐廳/NN

“大家好”

“How are you doing today?” “你好嗎?”

The output can be viewed as a sequence of classification
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POS Tagging

◉ Tag a word at each timestamp
○ Input: word sequence

○ Output: corresponding POS tag sequence

61

四樓 好 專業

N VA AD



Natural Language Understanding (NLU)

◉ Tag a word at each timestamp
○ Input: word sequence

○ Output: IOB-format slot tag and intent tag

62

<START>  just   sent   email   to   bob   about   fishing   this   weekend     <END>

O O O O

B-contact_name

O

B-subject I-subjectI-subject

→ send_email(contact_name=“bob”, subject=“fishing this weekend”)

O

send_email

Temporal orders for input and output are the same
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超棒 的 醬汁

Machine Translation

◉ Cascade two RNNs, one for encoding and one for decoding
○ Input: word sequences in the source language

○ Output: word sequences in the target language

64

encoder

decoder



Chit-Chat Dialogue Modeling

◉ Cascade two RNNs, one for encoding and one for decoding
○ Input: word sequences in the question

○ Output: word sequences in the response

65

Temporal ordering for input and output may be different



Concluding Remarks

◉ Word Representations
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◉ RNN Applications
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